Self-Timed FIFO:

An Exercise in Compiling Programs into VLS| Circuits

Alain J. Martin

Computer Science Department
California Institute of Technology

5211:TR:86

The research described in this paper was sponsored by
the DEfense Advanced Research Projects Agency, ARPA Order No. 3771,
and monitored by the Office of Naval Research
under' contract number N00014-79-C-0597

© California Institute of Technology, 1986
published in
IFIP WC 10.2 International Working Conference

on "From HDL Descriptions to Guaranteed Correct Circuit Designs",
Grenoble, France 9-11 September 1986. D. Borrione (ed)

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1986 2 REPORTTYPE 00-00-1986 to 00-00-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Se_zlf-Tllmed FIFO: An Exercisein Compiling Programsinto VL SI £b. GRANT NUMBER
Circuits

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER

DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 23
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Self-timed FIFO:

An Exercise in Compiling Programs into VLSI Circuits

Alain J. Martin

Computer Science Department
California Institute of Technology

5211:TR:86

SELF-TIMED FIFO: AN EXERCISE IN COMPILING
PROGRAMS INTO VLSI CIRCUITS

Alain J. MARTIN

Computer Science Department, California Institute of Technology,
PASADENA, CA 91125, USA¢

A method for compiling a high-level description of a computation
(a set of communicating processes) into a self-timed VLSI circuit
is explained with an example: the construction of a self-timed
FIFO element. The method essentially relies on the four-phase
handshaking expansion of the communication actions. The pro-
gram of each process is compiled into a set of “production rules”
from which all explicit sequencing has been removed. By match-
ing the production rules to those describing the semantics of the
VLSI-operators (and-gate, or-gate, C-element, arbiter, etc.), the
programs are identified with networks of operators. We show how
the different heuristics that the method allows lead to different cir-
cuits. In particular, the example illustrates the trade-offs between

simplicity and efficiency of the circuits. ‘

1. INTRODUCTION

We have developed a method for “compiling” a high-level description of a
computation (a set of communicating processes) into a self-timed VLSI cir-
cuit. Self-timed [8] (or delay-insensitive [9]) circuits are sequential circuits
in which the sequencing is enforced entirely by communication mechanisms.
No clock signals are used, and no assumption is made on the delays in op-
erators and wires except that the delays are finite. The advantages of
self-time circuits are many: First, with the increasing size of circuits, it
becomes more and more difficult to distribute safely a clock signal across a
chip. Second, clocked circuits rely on worst-case assumptions on the timing
behavior of the components, which decreases their performances. Third,
with no restriction on the length of wires, layout is facilitated.

In the method we propose, the computation is initially described as a set of
communicating processes in the notation of [3], which is somewhat similar
to C.A.R. Hoare’s CSP [2]. This first description is the reference solution,

t The research described in this paper was sponsored by the Defense Advanced Research Projects Agency, ARPA Order
number 3771, and was monitored by the Office of Naval Research under contract number N00014-792-C-0597

which has to be proved correct. The program is then compiled into a delay-
insensitive circuit by applying a series of semantics-preserving transforma-
tions. Hence the circuit obtained is correct by construction: all semantic
properties that can be proved of the program hold for the circuit as well.

The compilation is systematic and essentially relies on the four-phase hand-
shaking implementation of communication actions. The program of each
process is compiled into a set of “production rules” from which all ex-
plicit sequencing has been removed. By matching these production rules
to those describing the semantics of the VLSI-operators (and-gate, or-gate,
C-element, arbiter, etc.), the programs are identified with networks of
operators, i.e., self-timed circuits.

The method has been applied to a whole spectrum of problems, some of
them quite difficult, like distributed mutual exclusion [4] and fair arbitra-
tion [5]. The results are far beyond our expectations. For most circuits,
especially complex ones, the compiled circuits are superior to their “hand-
designed” counterparts, i.e. they are simpler and use fewer operators, in
particular state-holding operators. A general description of the method can
be found in [4] and [6].

As an exercise in applying the method, we will construct circuits corre-
sponding to a self-timed FIFO-element. We will see how the different alter-
natives that the method allows lead to different solutions. We first present
the program notation and the VLSI operators that constitute the “object
code”. We then describe the four steps of the compilation and illustrate
the method by constructing different versions of the FIFO-element.

2. THE PROGRAM NOTATION

Sequential part

For the sequential part of the algorithm, we use a subset of Edsger W. Dijk-
stra’s guarded command language [1], with a slightly different syntax. We
will give only a very informal definition of the semantics of the constructs
used.

i) 571 stands for b = true, b| stands for b := false.

ii) The execution of the selection command [Gy — S1 | ... | Gn — 5.,
where G; through G, are Boolean expressions, and S; through S, are
program parts, (G; is called a “guard”, and G; — S; a “guarded com-
mand”) amounts to the execution of an arbitrary S; for which G; holds.
If -(G1V...VG,) holds, the execution of the command is suspended
until (G1V ...V G,) holds.

iii) Besides the usual sequencing operator—the semi-colon—, we introduce
a weaker sequencing operator—the comma—. For atomic actions z and
¥, “z,y” stands for the execution of z and y in any order.

iv) [G] where G is a Boolean, stands for [G — skip], and thus for “wait
until G holds”. (Hence, “[G]; S”and [G — S] are equivalent.)

v) *[S] stands for “repeat S forever”.

vi) From ii) and iii), the operational description of the statement
#[[G1 = S1 | ... | Gn — Sa]] is “repeat forever: wait until some G;
holds; execute an S; for which G; holds”™.

Communicating processes

A concurrent computation is described as a set of processes composed by the
usual parallel composition operator ||. Processes communicate with each
other by communication actions on channels; they do not share variables.
When no messages are transmitted, communication on a channel is reduced
to synchronization signals. The name of the channel is then sufficient for
identifying a communication action.

If two processes pl and p2 share a channel named X in pl and Y in p2,
at any time the number of completed X-actions in pl equals the number
of completed Y -actions in p2. In other words, the completion of the n-
th X-action “coincides” with the completion of the n-th Y -action. If,
for example, pl reaches the n-th X-action before p2 reaches the n-th Y -
action, the completion of X is suspended until p2 reaches Y. The X-action
is then said to be pending. When thereafter p2 reaches Y, both X and
Y are completed. The predicate “X is pending” is denoted qX . If, for
an arbitrary command A, cA denotes the number of completed A-actions,
the semantics of a pair (X,Y) of communication commands is expressed
by the two axioms:

cX=cY (A1)
-qX V -qY. (A2)

Probe

Instead of the usual selection mechanism by which a set of pending commu-
nication actions can be selected for execution, we provide a general Boolean
command on channels, called the probe. In the original definition given in
[3], the probe command X in process pl has the same value as qY . Here,

we use a weaker definition, namely:

X=qY
ql = oX,

where oP means P holds eventually. For example, a construct of the form
X - X|Z— Z]

can be informally interpreted as “if a communication action is pending at
the other end of channel X, fire X; if a communication action is pending
at the other end of channel Z, fire Z”.

3. THE “OBJECT CODE”

The set of operators with which we build circuits is not unique. In this
introduction, we will use the simple set consisting of and, or, exclusive-or,
C-element, enabled C-element, wire, and fork. Each operator is described
by a set of production rules. A production rule is similar to a guarded
command, and we shall therefore use a similar syntax. There are, however,
important semantic differences. Consider the production rule G+~ S:

e S is either a simple assignment or of the form “sl, s2” where s1 and 2
are each a simple assignment.

e If G holds, the correct execution of S is guaranteed only if G remains
invariantly true until the completion of §. We say that G must be
stable.

e Unlike the guarded commands of a selection or a repetition, the mutual
exclusion among the different production rules of a set is not guaranteed
automatically. It has to be enforced by the semantics of the program.

o If stability of the guards and mutual exclusion among guards are guar-
anteed, the production rule set PRS is semantically equivalent to the
repetition *[[GCS]], where GCS is the guarded command set syntacti-
cally identical to PRS. The descriptions of the operators used in this
paper in terms of their production rules and their logic symbols are as
follows.

The C-element:
(z,y)Cz= z Ay 21

—z Ay 2|

The enabled C-element:
(z,y;u) eCz2= zAyAur— 21

T A-yAur 2| 9 Z
v

> x
N

)4
The “and”:
(z,y) Az= zAy— 21 -{‘D_‘;
zV-y—z)
—
y
The “or”:
(z,y) Vz= zVy— 27 X 2

ﬁz/\'ﬂyl—)zl

The “exclusive-or”:

(z,y) Xor z= z#yr— 21
c=yw— 2z

&! !x\
N

X, J
The wire:
Twy=E z—yt x y
z—y] >——I——>
Z
The fork:

zf (y,2)= z—yT,27
—z—yl,z]

Any input or output variable of an operator may be negated. In particular,
a wire with its input or its output negated—but not both—is an inverter.
A negated input or output is represented in the figures by a small circle on
the corresponding line.

4. THE COMPILATION METHOD
Process Decomposition

The first step of the compilation, called “process decomposition”, consists in
replacing a process by several semantically equivalent processes. The pur-
pose of the decomposition is to obtain a process representation of the pro-
gram in which the right-hand side of each guarded command is a straight-
line program, i.e., consists only of simple assignments and communication
commands, composed by semi-colons and commas.

Decomposition rule: A process P containing an arbitrary program part
S is semantically equivalent to two processes P1 and P2, where P1 is
derived from P by replacing S with a communication action C on the newly
introduced channel (C, D) between P1 and P2, and P2 = «[[D — S; D]).

For example, a process P of the form
P = [50;51;52]

can be replaced by the sematically equivalent program (P1||P2), with
P1 = %[S0;C; S2]

P2 = «[[D — S1; D]].

Observe that the above decomposition does not introduce concurrency. Al-
though P1 and P2 are potentially concurrent processes, they are never
active concurrently: P2 is activated from P1, much as a procedure or a
coroutine would be. The only purpose of this transformation is to simplify
the structure of each command. Process decomposition is applied repeat-

edly until the right-hand side of each guarded command is a straight-line
program.

Handshaking Expansion

The implementation of communication, called “handshaking expansion”,
replaces each channel by a pair of wire-operators and each communication
action by its implementation. Channel (X,Y) is implemented by the two
wires (zo w yi) and (yo w z7).

If X belongs to process pl and Y to process p2, zo and z: belong to pl,
and yo and yt belong to p2. Initially, zo, z:, yo, and yi—which we will
call the “handshaking variables of (X,Y)”—are false. Assume that the
program has been proved to be deadlock-free and that we can identify a
pair of matching actions X and Y in pl and p2 respectively. We replace
X and Y by the sequences U, and U, respectively, with:

U, =zo0T; [zi]
Uy = [vi]; yoT.

Unfortunately, when the communication terminates, all handshaking vari-
ables are true. Hence, we cannot implement the next communication with

U: and Uy. However, the complementary implementation can be used for
the next matching pair, namely:

D, = zo; [-zi]
Dy = [-y1); yol.

The solution consisting in alternating U, and D, as an implementation of
X, and U, and D, as an implementation of Y is essentially the so-called
“two-phase handshaking”, or “two-cycle signaling”. But it is in general not
possible to determine syntactically which X- or Y -actions are following
each other in an execution. In such cases, two-phase handshaking imple-
mentations require testing the current value of the variables. In this paper,
we shall use a simpler but less efficient solution known as “four-phase hand-
shaking”, or “four-cycle signaling”.

In a four-phase handshaking protocol, all X-actions are implemented as
“Ug; D" and all Y -actions as “Uy; D,”. Observe that the D-parts in X
and Y introduce an extra communication between the two processes whose
only purpose is to reset all variables to false. The synchronization intro-
duced by this extra communication is unnoticeable since the immediately
preceding communication implemented by U, and U, sees to it that both
processes reach a matching D, and D, “at the same time”.

Both protocols have the property that for a matching pair (X,Y’) of actions,
the implementation is not symmetrical in X and Y. One action is called
active and the other one passive. The four-phase implementation with X
active and Y passive is:

X =zo01; [zd]; zol; [~2d] (1)
Y = [yi]; yoT; [-wil; yol. (2)

When no action of a matching pair is probed, the choice of which one should
be active and which one passive is arbitrary, but a choice has to be made.
The choice can be important for the composition of identical circuits. A
simple rule is that for a given channel (X,Y’), all actions at one side are
active and all actions at the other side passive. If X is used, all X-actions
are passive—with the obvious restriction that ¥ cannot be used in the same
program.

The implementation of the probe is simply:

7

(3)

| >
Il

z
yi.

Given our definition of suspension, the proof that this implementation of
the probe fulfils the definition of Section 2 is straightforward and is omitted.

A probed communication action X — ... X is implemented:

zi — ...z0T; [-zi]; zo .
Basic properties

The following properties of the handshaking protocol play an important
role in the compilation method.

Property 1: For the pair of wires (zo w yi) and (yo w zi), used together
as in (1) and (2), and all variables false initially, the following sequence of
transitions is guaranteed to occur if the system is deadlock-free:

«[zoT; yil; yot; =15 zol; yil; yol; zil]. (4)

Hence, the following postconditions hold:

zo {{ozi}
zo | {0z} (5)
yo T{o—yi}

In other words, if the system is deadlock-free, the handshaking protocol
guarantees that once zot1 has been completed, z¢ holds eventually. And
similarly for zo| and yoT.

Property 2: Consider the handshaking expansion of a program p accord-
ing to (1), (2), and (3). Provided that the cyclic order of the four hand-
shaking actions of a communication command is respected, the last two
actions of this command—the two actions of D, or D,—can be inserted
at any place in p without invalidating the semantics of the communication
involved. However, modifying the order of these two actions relatively to
other actions of p may introduce deadlock.

Property 2 is a direct consequence of the way in which we have introduced
the sequences D; and D,. In this paper, we will ignore the deadlock issue
when we re-order handshaking actions.

5. FOUR-PHASE FIFO-ELEMENT

A FIFO-element is a process—say, p—communicating with its left-hand
neighbor by channel L and with its right-hand neighbor by channel R.

For instance, p receives a value from its left-hand neighbor by the input
command L?z and sends the received value to its right-hand neighbor by
the output action R!z, as follows:

p = %[L?z; Rz).

For the time being, let us ignore the transmission of values over the channels
and let us concentrate on implementing the simpler program:

p=*[L;R].

The program to be compiled is so simple that, a priori, we see no reason for
using process decomposition. (We will see later that, even in this simple
case, process decomposition can be useful.) We choose to implement com-
munication commands L and R by four-phase handshaking, and, in view
of our intention to compose several of these elements, we choose L to be
passive and R active. This leads to the handshaking expansion of p:

#[[li]; lot; [-li); lol; rol; [ri); rol; [-ri]).

Because of the cyclic nature of the program, and because all variables are
initialized to false, the above program is equivalent to

*[[-ri]; [li]; loT; [-li]; lol; rof; [ri]; rol]. (6)
6. PRODUCTION-RULE EXPANSION

The next step is to compile the handshaking expansion of the program
into a set of production rules from which all explicit sequencing has been
removed. By matching these production rules to the ones describing the
semantics of operators, the programs can be identified with networks of
operators. We use the compilation of p to illustrate the different steps of
the expansion.

We start with the production-rule set syntactically derived from the pro-
gram. In the case of p, it is the set derived from (6), namely:
—rtAli—lo]
=li—lo)
—lo—rof
re—rol.

The execution of a production rule is called effective if it changes the value
of a variable. Otherwise, it is called vacuous. We ignore vacuous executions
of production rules. For each guarded command of the program, the pro-
duction rule set representation is semantically equivalent to the program
representation if and only if the order of execution of effective produc-
tion rules is the same as the order of the corresponding transitions in the
program—we call it the program order. (As a clue to the reader we list the
production rules of a set in program order.)

In general, we have to strengthen the guards of some rules to enforce ex-
ecution in program order. This is the case in our example: Since —lo
holds initially, the third production rule can be executed first if we don’t
strengthen the guards. Because all handshaking variables of L are back to
false when L is completed, we cannot find a guard for the transition rof.
(Hence, the transitions following a semi-colon that can be identified with a
semi-colon of the original program are likely to be difficult to deal with.)

One technique for solving this problem is to use the possibility of shuffling
any of the last two actions of the four-phase expansion of a communication
command as a consequence of Property 2. Of course, the shuffle must
maintain the cyclic order of the four actions. The other technique consists
in introducing a state variable to identify uniquely the state in which a
certain transition is to take place.

In this exercise, we show that the different circuits for the four-phase FIFO
correspond to the different ways to apply those two techniques. We first
apply different shufflings of the handshaking actions. We will observe that
more shuffling leads to simpler circuits and less shuffling to a “quicker return
linkage”. We start with the maximum shuffling and end with the quickest
return linkage (no shuffling), which corresponds to an implementation with
a state variable .

7. MAXIMUM SHUFFLING

The maximum shuffling that still maintains the order between the first half
of the handshaking of L and the first half of the handshaking of R is:

s([~ril; [l]; lot; rot; [rdl; [-lil; lol; roll. (7)

This leads to the production-rule expansion:

“riAle— lof (8)
low rot {ori A o—li} (9)

10

rtA=li—lo| (10)
—lo +— ro| {o—ri}. (11)

Using the postconditions indicated between braces—these conditions rely
on (5)—it is easy to verify that the production rules of the set are exe-
cuted in program order. Hence the execution of the production-rule set is
equivalent to the execution of (7).

The last step of the compilation, called operator reduction, consists in iden-
tifying production rules of the program with production rules defining the
operators. We group the production rules that modify the same variable
and we try to identify them with one or more operators. The production
rules (8) and (10) are implemented as (—r%,l¢) C lo. The production rules
(9) and (11) are implemented as lo w ro. The circuit is represented in
Figure 1.a. with the alternative representation of Figure 1.b.

I rr lr ro

< ' > -
lo ro lo rl

(a) (b)

-Figure 1-
8. LESS SHUFFLING

Here, we shuffle only lo] in the original handshaking expansion. We get:
*[[ri Ali]; Lot [—li]; rot; [rd]; lol; rol].
The production rule expansion gives:

“rt Al —lo]

loA-li— ro}

ri—lo|
~lowrro} .

The two production rules that modify lo cannot be immediately identified
with an operator, and the same for the two production rules that modify

11

ro. In such a case, we perform on the group a last transformation called
symmetrization: we transform the guards of the production rules—again
under invariance of the semantics—so as to make them “look like” the
guards of operators. If the guard contains too many variables, this step may
also involve decomposing a production rule into several ones by introducing
additional variables called padding variables.

For the guards of lo, we observe that we can strengthen the guard r7 of lo]
as —li Ari since —l7 holds as a precondition of the production rule. For the
guards of ro, symmetrization requires to weaken the guard —lo of ro] as
[1V ~lo. In this case, since we have weakened the guard, we have to check
that we have not enlarged the set of states in which the production rule
can be effectively executed. Since —ro holds when lv holds, no such state
has been added. Hence the transformation is safe. After symmetrization,
we get the equivalent set:

-ri Ali — lo] (
lonN=li—rof (
-liAri—lo] (14
liv-lo—ro]. |

Now, the operator reduction is straightforward:

(12)&(14) : (-rs,l2) C lo
(13)&(15) : (lo, —lz) A ro.

which gives the circuit of Figure 2.

l lr

-Figure 2-

9. LESSER SHUFFLING

In this case we postpone the sequence [~l];lo} only until after rof and [—r1]
until after lo]. Again these shufflings maintain the cyclic order among the
handshaking actions of L and among the handshaking actions of B. We
get the program:

12

*[[le]; Loy [-rd]; rof; [le]; lo|; [ri]; rol].

The production rule expansion is straightforward:

—roAlt—lo]
loN-ri—rof
=i Aro—lo|
ritA-lo—ro] .

Which immediately leads to the operators:

(mro,l3) C lo
(lo,~ri) C ro.

The circuit is represented in Figure 3.

/4 ro

-Figure 3-

10. QUICK-RETURN LINKAGE

We will now compile p without shuffling actions. We will observe that
the compilation is more complicated than with shuffling but leads to more
efficient circuits: the L-handshaking sequence is completed before the R-
handshaking sequence starts. For this reason, such an implementation is
sometimes called a “quick-return linkage” [8].

First implementation

(This solution has been designed together with Huub Schols, from Eind-
hoven University of Technology.) In order to define the precondition of rof
uniquely, we now introduce a state variable u as follows:

#[[-ri Ali]; loT; ul; [u); [-le]; lol; rof; [re]; wl; [—u]; rol]

An additional problem here is that the condition —ri A l7 is not strong
enough as precondition of lo1: since the implementation of L is passive, {2

13

can become true after lo], i.e. -r¢Als may hold after lo|. We strengthen
the condition with —u and get the correct production rule set:

—ri Ali A —u — lof (18)
lo—ut (19)
-liAurlo] (20)
uA-lo—rol (21)
i ul (22)
—urol. (23)

The symmetrizations of (19) & (22) and of (21) & (23) are straightforward:

riAlo—uf (19
—loAri—ul (22)
uA=lo— rof (21)
loV-ursro]. (23"

For the symmetrization of (18) & (20), since the guard of (18) contains
three variables, we introduce a padding variable y to decompose the guard:

~uAli—yt (24)
-riAy—lot (25)
uA=li—y] (26)
riVoy—lo]. (27)

(For the newly introduced variable y, we have to check that no effective
transition other than (24) and (26) is possible in the production rule ex-
pansion.) The operator reduction now gives:

(19) & (22") : (~ri,lo) C u
(21) & (23') : (u,—lo) A ro
(24) & (26) : (li,-u) C v
(25) & (27) : (—-ri,y) A lo

which gives the circuit of Figure 4.

14

-Figure 4

Second implementation

We decompose p into two processes ¢ and ¢:

=« [C; R]
t=«[[D— L; D],

where (C,D) is a newly introduced channel. According to the process
decomposition rule, (g||z) is equivalent to p. Because C matches D and
D is probed, C has to be implemented as active and D as passive. It turns
out that the implementation of ¢ with C and R both active is simpler
than the original one, and that ¢ is also easy to implement. Again the
compilation of ¢ without shuffling requires introducing a state variable u:

= *[co 1; [ct]; w T; [u]; co |; [mei]; ro 15 [re]; wl; [—u); ro l; [-rd]].
The production rule expansion gives:

rtA-ur—cot
-riAct—ul
riVur+rcol
uA-ci—rof
riA-ci—ul
~uVet—ro].

The operator reduction gives:

(-ri,—u) A co
(-ri,ci) C u
(u,—ci) Aro.

The circuit is shown in Figure 5, in which (—-r¢,-u) A co is replaced by
(ri,u) V —co. ‘

15

—Figure 5—

The compilation of ¢ is straightforward. The handshaking expansion gives:
*[[de]; [l]; Lo 1 [—li); lol; dot; [di]; dol).

Since D is an internal channel to ¢, we can shuffle the sequence [—l4];lo |
with respect to D without changing the order of L relative to R. We get:

*[[di]; [l]; lo1; dot; [—di]; [-]; lol; do).
The production rule expansion leading to the circuit of Figure 6 is:

diAli—loT,dot
~diA=li—lol,do].

i ao

~-Figure 6-

The complete circuit of Figure 7 is obtained by composing the circuits of

Figure 5 and Figure 6.

of
lr . do 7/ >3

-Figure 7-

16

11. MESSAGE PASSING AND DOUBLE-RAIL ENCODING

Let us now go back to the original program p = *[L?z; R!z] where x is
an internal Boolean variable. In order to implement p, we duplicate the
channels L and R and use channels L1 and L2 to input the values true
and false respectively, and channels R1 and R2 to output the values true
and false respectively. We get

pp = +|[[L1 — L1;R1
|L2 — L2; R2
Il

with =L1 V —=L2 invariantly true. Using the first solution, we get the
handshaking expansion:
pp = #[[-rli Alli — 101, rlof; [rli A —llid]; llo), rlo]
| =124 A 129 — 1201, r20%; [r2¢ A —l2:]; [20], r20)

Il

Next, we have to ensure mutual exclusion between the two guarded com-
mands in order to be able to replace them by a set of production rules.

Assume pp is inside the first guarded command. Since —l1: V —l2: holds
as a consequence of L1V —~L2, the second guard is false as long as pp
has not completed l1o |. Since r1z holds until pp has completed rlo |, the
second guard is guaranteed to remain false as long as pp is inside the first
guarded command, if we strengthen the second guard as:

—rls A —r2i Al21.
And symmetrically for the first guard. We get:

pp = *[[—rli A =r2¢ Alli — l1oT, rlof; [rli A —I1d); llo], rlo]
| =r2¢ A =r1i A 127 — 1207, r20T; [r2i A —I2i]; 120], r20]

II-

The production rule expansion for the first guarded command gives:

“rliA-r2i—al (28)
“aAlli—ut (29)
u—llof,rlo? (30)
rilVr2i—al (31)
aA-lli—u)l (32)
—uw—llo|,rlo} (33)

17

The operator reduction gives:

(28) & (31) : (rli,r22) V a
(29) & (32) : (—a,ll?) C u
(30) & (33) :u f (llo,rlo)

The operator reduction of the second guarded command is identical. The
final circuit is:

s rio

—-Figure 8-

If we let the two L-channels share wire lo, and the two R-channels share
wire rt, we get the circuit of Figure 9.

i rio

lo ri
L2/ r2o

-Figure 9-

18

12. COMPLETE FIFO-ELEMENT WITH “QUICK RETURN”

We use the second “quick return” solution and decompose pp as:

ql = *[C1; R1]
q2 = *[C?2; R2]
t1 = x[[D1 A L1 — L1; D1]]
t2 = «[[D2 A L2 — L2; D2]]

In order to guarantee that the concurrent execution of ¢1, ¢2, t1, and ¢2
is equivalent to the execution of pp, we have to strengthen the guards of
the handshaking expansions of {1 and t2 so as to enforce mutual exclusion
between the executions of the first and the second guarded commands of
pp. From the handshaking expansion of ¢ and ¢ in Section 10, we observe
that when pp is executing its first guarded command, {12V —d1s holds, and
symmetrically when pp is executing its second guarded command. Since
-l1% A —~I2¢ is guaranteed by definition, it suffices to strengthen the guards
of t1 and t2 as d1i Allt Ad2:, and d27 Al27 A d17, respectively.

Apart from this transformation, the rest of the compilation is identical to
the compilation of ¢ and t. The only difference, caused by the strengthening
of the guards of ¢t1 and ¢2 is that the production rules of [10 in t1 have to
be implemented by the enabled C-element:

(d13,114; d23) eC Ilo

and the production rules of /20 in {2 have to be implemented by the enabled
C-element:

(d2i,124; d13) eC 120.

The complete circuit is shown in Figure 10.

13. CONCLUSION

In this application of the method, we have shown how different circuits
for a self-timed FIFO-element can be derived from the different heuristics
that the method allows. The example also cleary illustrates the trade-offs
between ease of compilation and simplicity of the circuits on the one hand,
and efficiency on the other hand.

We have used only four-phase handshaking in this example, although two-
phase handshaking is more efficient since it uses only half of the handshaking
sequences. Unfortunately, two-phase handshaking is more difficult to realize
because of the necessity to record the current value of the handshaking

19

-Figure 10—

variables, and therefore we have first developed a method based on four-

phase handshaking. However, recent experiments with two-phase indicate
that the method can handle both protocols

The operators used to construct the circuits are all well-known and VLSI
implementations exist for all of them. (The enabled C-element is the only
one the implementation of which is somewhat difficult. Fortunately, it can
be replaced most of the time by an asymmetric C-element, which is easier
to implement. This is the case for the circuit of Figure 10.)

The most important assumption on which the correct functioning of the
circuits depends is the stability assumption for the guards of operators.
The stability of a guard is guaranteed by two properties. One the one
hand, the compilation method sees to it that a change of value on a single
wire is followed by a change of value of the output variable of the operator
the wire is an input of. A change of value on a fork is followed by a change
of value of the output variable of at least one of the operators the fork is
an input of. Since we assume the forks to be isochronic, this is enough to
guarantee that the change has reached all outputs of the fork before a new
change occurs. On the other hand, we may assume that a change of value-a
change of voltage—on a VLSI wire is monotonic. The combination of these
two properties guarantees the stability of the guards.

Often, the isochronicity of the forks is not necessary. When it is, it is
enough to ensure, for a binary fork, that the delay in a branch of the fork
is shorter than the delay in the gate to which the branch is not connected.

20

ACKNOWLEDGEMENTS

I would like to thank Dominique Borrione, Steve Burns, Pieter Hazewin-
dus, Kevin Van Horn, and Martin Rem for their extensive comments on
the manuscript, and David Black and Bob Sproull for several discussions
over compiling self-timed FIFO. Calvin Jackson’s expert assistance in the
preparation of the manuscript was greatly appreciated.

REFERENCES

[1] Dijkstra, Edsger W., A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs NJ (1976).

[2] Hoare, C.A.R., “Communicating Sequential Processes”. Comm. ACM
21, 8, pp. 666—677 (August 1978).

[3] Martin, A.J., “The Probe: an Addition to Communication Primitives”,
Information Processing letters 20, pp. 125-130 (1985).

[4] Martin, A.J., “The Design of a Self-Timed Circuit for Distributed Mu-
tual Exclusion”, Proc. 1985 Chapel Hill Conference on VLSI, ed. Henry
Fuchs, pp. 247-260 (1985).

[5] Martin, A.J., “A Delay-Insensitive Fair Arbiter”, Caltech Computer Sci-
ence Technical Report 5193:TR:85 (1985).

[6] Martin, A.J., “Compiling Communicating Processes into Delay Insen-
sitive VLSI circuits”, to appear in Distributed Computing, vol. 1, no 3,
1986.

[7] Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, Reading MA (1980).

[8] Seitz, C.L., “System Timing”, Chapter 7 in Mead & Conway, Introduc-
tton to VLSI Systems, Addison-Wesley, Reading MA (1980).

[9] van de Snepscheut, J., “Trace Theory and VLSI Design” LNCS 200,
Springer-Verlag Berlin Heidelberg (1985).

21

